The Influence of Motion Path and Assembly Sequence on the Stability of Assemblies

نویسندگان

  • Sourav Rakshit
  • Srinivas Akella
چکیده

In this paper we present an approach for the stability analysis of mechanical part disassembly considering part motion in the presence of physical forces such as gravity and friction. Our approach uses linear complementarity to analyze stability as parts are moved out of the assembly. As each part is removed from the assembly along a specified path during disassembly, we compute the contact forces between parts in the remaining assembly; positive contact forces throughout the disassembly process imply the disassembly sequence is stable (since the parts remain in contact with one another). However, if the part that is being taken out induces motion of other parts in the remaining subassembly, we conclude the disassembly sequence is unstable. Thus, we are able to simulate the entire disassembly sequence considering physical forces and part motion, which has not previously been done. We then show the influence of part motion on the selection of stable disassembly sequences. In contrast to prior work on disassembly which has focused either on planning part motions based on only geometric constraints, or on analyzing the stability of an assembly without considering part motions, we explore the relation between part motion and the selection of stable disassembly sequences. Since we track the motion of all parts in an assembly, instability inducing motions can be identified and prevented by introducing appropriate fixtures, by selecting alternative disassembly sequences, or by changing the motion paths. We also describe when the presence of physical forces can make assembly and disassembly noninvertible, i.e., disassembly is not the inverse of assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi element doped type-II heterostructure assemblies (N, S- TiO2/ZnO) for electrochemical crystal violet dye degradation

Herein, we report multi-element doped Type-II heterostructure assembly consists of N, S doped TiO2 and ZnO for electrochemical crystal violet dye degradation studies. Electrochemical measurements were performed on these synthesized N-S codoped TiO2/ZnO compositeheterostructured assemblies which are fabricated on Titanium (Ti) substrate. It was observed that a composite ele...

متن کامل

Influence of Hygrothermal Environment and FG Material on Natural Frequency and Parametric Instability of Plates

In this article, vibration characteristics and the parametric instability of functionally graded material (FGM) plates with cyclic loading in a hygrothermal field are discussed. The plate element is modeled in a finite element by applying the third-order shear deformation hypothesis. The mathematical formulation of the FGM plate is made with two material constituents by applying the power rule ...

متن کامل

Effect of Step Length and Step Period on Walking Speed and Energy Consumption: a Parameter Study

Stability and performance are two main issues in motion of bipeds. To ensure stability of motion, a biped needs to follow specific pattern to comply with a stability criterion such as zero moment point. However, there are infinity many patterns of motion which ensure stability, so one might think of achieving better performance by choosing proper parameters of motion. Step length and step perio...

متن کامل

Dynamic Stability Analysis of a Beam Excited by a Sequence of Moving Mass Particles

In this paper, the dynamic stability analysis of a simply supported beam carrying a sequence of moving masses is investigated. Many applications such as motion of vehicles or trains on bridges, cranes transporting loads along their span, fluid transfer pipe systems and the barrel of different weapons can be represented as a flexible beam carrying moving masses. The periodical traverse of masses...

متن کامل

Producion of Nanoparticle Assemblies by Electro-Spraying and Freeze-Drying of Colloids: A New Method to Resolve Handling Problem of Nanoparticles

To resolve handling problem of nanoparticles, due to their small size, a new methodology of electro-spraying and freeze-drying was developed for colloidal nanoparticles of silica and titania to transform them to solid macro-scale nanoparticle assemblies.  The assemblies were then redispersed in an aqueous system to investigate the effect of formulation of original solutions and the process ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010